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Based on Polyakov's evaluation of the Fadeev-Popov determinant for (1 + 1)- 
dimensional gravity in the conformal gauge we formulate a canonical quantiza- 
tion in the synchronous gauge. We find that the system is describable as a 
quantum mechanical system of one degree of freedom. The quantization can be 
carried out and solved when any number of gauge fields are included. Scalar and 
spinor fields lead to new difficulties. For positive cosmological constant the 
geometry collapses as suggested by the classical system. For negative cosmologi- 
cal constant a more interesting behavior involving exponentially expanding and 
contracting universes occurs. 

1. I N T R O D U C T I O N  

The study of low-dimensional systems has proven to be a fruitful 
exercise in many  branches of physics and has been particularly useful in 
helping to unravel the dynamics of non-Abelian gauge fields. It is natural to 
try to employ this strategy in attempting to understand the connection 
between quantum mechanics and Einstein's geometrical theory of gravita- 
tion. Surely many  people have had this idea many  times and just as surely 
they have been put off by the statement that classical general relativity is 
trivial in space-time dimensions lower than 4. More precisely, in 2 +  1 
dimensions, the only solutions of Einstein's equations with cosmological 
constant are space-times of constant curvature, while in 1 + 1 dimensions 
f v / g R  is a topological invariant and the only solution is g,~ = 0. There do 
not seem to be enough degrees of freedom to support  a quantum field 
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theory. In fact in 1 + 1 dimensions there are not, but we will see that this 
objection does not prevent us from constructing a reasonable quantum 
theory. 

1 + 1 Dimensions seems to be particularly annoying. The Lagrangian 
L~' = - )~0~/( - g) ~ / 2 ~  contains no derivatives and we cannot define canonical 
momenta, let alone a Hamiltonian. Light is thrown on the problem by the 
following fact, which we abstract from Polyakov's beautiful attempt to 
construct a viable string model (Polyakov, 1981): 

Consider the path integral 

z= f dg..expi f ( -  KoR - Xo) (1) 

which, according to the work of Feynman, DeWitt, Mandelstam, Fadeev, 
and Popov (1967), is an appropriate starting point for constructing a 
quantum theory of gravity. As in any other gauge theory the path integral 
(1) is ill defined until we choose a gauge and compute the Fadeev-Popov 
determinant. Polyakov chooses the conformal gauge 

g~,. = ( exp2 , )n . .  (2) 

and computes the determinant in closed form: 

z=Sddpexpi=[~26 S(o.~b)2+~te2~+?~72dp ] (3) 

where k (which we drop since it is a total divergence) and ~ are (infinitely) 
renormalized constants. 

We are led to the surprising conclusion that (1 + 1)-dimensional quan- 
tum gravity is in some sense equivalent to the theory of a single scalar field. 
More importantly, perhaps, the theory has derivatives in it and thus has a 
chance of having interesting dynamics. The question now is, in precisely 
what sense is gravity equivalent to the Liouville field theory? Does it really 
have so many degrees of freedom? 

There is an important technical problem with the quantization of (3) 
which relates directly to these questions. The classical Liouville Lagrangian 
is invariant under the conformal transformations, 

qg(x + t , x -  t) ~ ~p(f(x + t), g ( x -  t))+ln f ' ( x  + t ) g ' ( x -  t) 

for any analytic f and g. This is a remnant of the general coordinate 
invariance of the original Lagrangian. Like all such residual gauge symme- 
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tries it must be preserved by any quantization of LLiouvill c that purports to 
be quantum gravity. Neither the standard canonical quantization 4 (Jackiw 
and 'Hoker, 1982), nor more sophisticated methods (Thorn et al., 1982; 
Gervais and Neveu, 1983) based on exact classical solutions, preserve these 
symmetries. 

Assuming that a conformally invariant quantization procedure can be 
found the residual coordinate invariance will require the imposition of 
constraints in the Hilbert space of the Liouville field theory. Physical states 
must be annihilated by the generators of all residual gauge (conformal) 
transformations. This may drastically reduce the number of true degrees of 
freedom in the problem. 

In conclusion we see that although Polyakov's work raises the hope of 
finding a nontrivial quantum dynamics for gravity in 1 + 1 dimensions it 
leaves many questions unanswered. In the next two sections we will try to 
resolve these puzzles by looking at (1 +l)-dimensional gravity from a 
completely different point of view. 

2. THE SYNCHRONOUS GAUGE 

Our basic intuitions about (1 + 1)-dimensional gravity are based on 
J. A. Wheeler's "superspace" formulation of the dynamics of gravitation. 
According to Wheeler (Misner et al., 1970), the basic dynamical variable of 
(d + 1)-dimensional general relativity is a d geometry. The quantum states 
of the system are represented by functions on the space of all d geometries 
--superspace. 

For definiteness we shall make some topological restrictions on super- 
space. Space is assumed connected at all times. In one space dimension only 
two choices are possible; open or closed periodic geometries. Whenever a 
choice must be made we will look only at a closed universe. 

For d = 1 a smooth closed connected d manifold is completely char- 
acterized by a single parameter--its volume o. Thus in 1 + 1 dimensions 
quantum gravity should be a simple quantum mechanics problem with one 
degree of freedom. 

In classical general relativity the superspace idea can be formulated 
without choosing a gauge (Arnowitt et al., 1962). The Einstein equations 

R . .  -  g..R = 0 (4) 

can be derived as the variational equations of the action f 1/g R. The d + 1 
metric g~, is varied over all values which interpolate between a given pair of 
d geometries. The space-space components of the equations are dynamical, 



478 Banks and Susskind 

while the space-time and time-time equations are constraint equations 
analogous to Gauss' law in gauge theories. They express the vanishing of the 
generators of the local symmetries of the theory. The space-time equation is 
the generator of reparametrizations of the initial d-dimensional surface, 
while the time-time equation is the generator of local time translations, i.e., 
the Hamiltonian density. Thus we obtain the Wheeler-DeWitt (W-D) 
equations 

~ ( x )  : 0  (5) 

P(x)  = 0 (6) 

The time-time and space-time components of the metric [the lapse and 
shift functions (Arnowitt et al., 19)] are not determined by the equations 
(they are analogous to A 0 in gauge theories) but are chosen to simplify the 
particular solution under study. (Wheeler's picturesque name for this is 
"many fingered time.") This convenient classical procedure cannot be 
applied in quantum mechanics. In order to formulate the theory in a Hilbert 
space we must choose a gauge, i.e., fix the value of the lapse and shift 
functions. In the quantum theory the equations that follow from variation 
of go0 and g0~ will be imposed as conditions on physical states in the Hilbert 
space. It should be emphasized that this procedure is independent of the 
particular form of the Einstein action. The absence of equations for g0o and 
g0i, and the necessity of imposing constraints on the states is a consequence 
of general covariance. Different generally covariant actions will lead to 
different forms for the generators, but the Wheeler-DeWitt equations will 
always be valid. 

Most previous discussions of the canonical quantization of gravity 
(Teitelboim, 1983) have used the synchronous or proper-time gauge (s 
gauge) 

g00 = 1 

g0, = 0 (7) 

We shall follow this tradition, but we find it more convenient to work with 
zweibeins e~ instead of metric components. Thus we impose the constraints 

e ~ = 1 

e ~ = 0 = e  ~ 

e]-- e (8) 
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which can be achieved by combining a local Lorentz transformation with a 
general coordinate transformation. One first picks a spacelike surface F in 
the two geometry and coordinatizes it in an arbitrary way. The local time 
axes are then chosen to be the geodesics which intersect F perpendicularly 
and coordinate time is set equal to proper time. This fixes g00 = 1 and 
g0i = 0. Finally a local Lorentz transformation is performed to align the 
zweibein with the coordinate axes. 

In general, the coordinates defined in this way are not globally regular. 
Even if space-time is fiat, the synchronous coordinates defined off a curved 
initial surface will be singular, as illustrated in Figure 1. The multiple 
coordinate labeling of a single point which is evident in this figure is a 
nuisance. More disturbing is the fact that the surfaces of constant time are 
not smooth 1-manifolds even for completely smooth 2-geometries (see 
Figure 2). These facts raise serious questions about the utility of the 
synchronous gauge. 

We believe that these problems are not as serious as they seem though 
we do not have a rigorous argument that this is so. Such an argument would 
go something like this: The object we would like to construct is the 
amplitude for a given spatial geometry to evolve into another one. In the 
synchronous gauge one can ask the more detailed question: What is 
the amplitude for this transition in a given proper time ~'? But general 
covariance [and in particular the Wheeler-DeWitt equation H(x)= 0] tell 
us that this more detailed information is illusory, the amplitude is indepen- 

Fig. I. Erection of a synchronous coordinate system. 
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Fig. 2. Pathology of synchronous coordinates. 

dent of the proper time. Thus without loss of generality we can consider a 
transition which takes place in an infinitesimal proper-time d~-. For any 
smooth 2-manifold which connects smooth 1-manifolds over an infinitesi- 
mal proper time interval the synchronous coordinates are nonsingular. The 
pathologies we have described above can only occur for manifolds which are 
kinky on arbitrarily short distance scales. We believe that this is an 
ultraviolet problem which will manifest itself only as a renormalization of 
parameters in the Hamiltonian which describes the dynamics of smooth 
manifolds. At any rate, we will ignore the problem from here on. 

The synchronous gauge conditions (8) are invariant under two classes 
of spatially local coordinate transformations. These are reparameterizations 
of the initial surface, under which e transforms as 

e(x, t) ~ e(x,t)+ Ox[fl(x)e ] (9) 

and changes in the position of the surface, under which 

[r 1 e ~ e +  f~ e2~x,s~ O~fo(x)e(xt) (10) 
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where 

The generator of spatial translations is 

P( z ) = e( z )O flI( z ) (11) 

1 6 
YI(z) i 6e(z) (12) 

and the equation P(z)l~k> = 0 is solved by 

r162 = ~k(v) (13) 

This implies, as we had anticipated, that quantum gravity reduces to a 
problem with one degree of freedom. 

It remains to find the Hamiltonian density ~r in the synchronous 
gauge and to solve the Wheeler-DeWitt equation 

,tg'(x)q,(o) = 0  (14) 

In principle this could be done by starting from the path integral 

f de;exp(-iX f d2xldetel) (15) 

where e~ ranges over all zweibeins with a given pair of 1-geometries as 
boundaries. This involves computing the Fadeev-Popov determinant in the 
s gauge which we have not done. Instead, in the next section we present a 
(Teitelboim, 1983) semiclassical determination of d~'(x) based on Polyakov 
(1981). 

Before turning to this semiclassical analysis we want to introduce 
another gauge which is related to the synchronous gauge as the axial gauge 
is related to the A 0 = 0 gauge. At any fixed time t we can perform a spatial 
coordinate transformation to make e(x, t) constant. The axial gauge is 
defined by making a time-dependent coordinate transformation so that 

e~(x, t) = v ( t ) ,  e~  t) =1 
(16) 

e~ t) = O, e~(xt)  - y ( x ,  t) 

We will find this gauge useful in discussing the coupling of gravity to 
matter. 
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3. THE HAMILTONIAN 

In the conformal gauge (c gauge) defined by (2) the Fadeev-Popov 
determinant provides an effective action given by (Polyakov, 1981) 

 f(a.ep) 2 he2~, 
2 

26 
r =  24~" (17) 

where ~ is the sum of the bare cosmological constant and a quadratically 
divergent correction. It can be chosen to vanish or to be a finite number of 
either sign. 

We shall begin by treating (17) as a classical Lagrangian and transform- 
ing the equations into the s gauge. The equation of motion 

[3q~ + 2~ke 2e~ (18)  

is known as the Liouville equation. In the c gauge the curvature invariant R 
and the determinant of the metric are given by 

R = e -  2q'[]O (19) 

I -  gl = e2* (20) 

Thus equation (18) may be written 3 

R(x, t )= -2X (21) 

so that the curvature scalar is constant. 
Now consider a spacelike curve F which we will use to erect a 

synchronous gauge. The surface F is identified as the surface r = 0. It may 
be chosen to satisfy a further gauge fixing constraint. We choose it so that 
the quantity ~ ( x )  

vanishes on I'. The dot in (22) denotes differentiation with respect to the 

3 C. Teiteboim and R. Jackiw (1981) have independently suggested that the covariant equation 
R = - 2;k is the appropriate analog of Einstein's field equations in 1 + 1 dimensions. From this 
point on the reader may interpret our analysis as a quantization of this equation in the 
temporal gauge. 
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proper time r. It is easy to show that this condition is invariant under 
reparametrization of F. 

Let us now prove that 

off(x, r )  = 0 (23) 

is satisfied for all time. To prove this we note that in the s-gauge the 
curvature R is given by 

Therefore (21) implies 

R=e/e (24) 

- = - 2 ~  ( 2 5 )  
e 

Now consider the time derivative of off(x) 

Using (25) gives 

- - - + X  
e 2e z 

(26) 

2 ) eII2 
of f (x)=/3  -~e+Xe =--~--~-+/3Xe 

where fie 

L =  B ~e - Xe ax 

(Note that L is reparametrization invariant). The Hamiltonian density 
corresponding to (28) is just offft(x), 

(29) 

is canonically conjugate to e. The Euler-Lagrange equation 

(28) 

Thus if off is initially zero it remains so for all ~'. 
We can derive the equation of motion (25) and equation (23) from a 

Lagrangian and the W-D equations. Choose 

= .- -~ o,~' (27) 
e 
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following from (28) is 

d ~ ~2 

dt e 2e 2 

o r  

- = - -  + x - 2 x  ( 3 0 )  
e 2e 2 

Now using the W - D  equation (23)just  gives (25). 
The vanishing of the generators of local spatial translations also 

follows. The local generator is 

~gYI 
P ( x )  = e Ox (31) 

Using (23) we find 

II  = / ~  = - ( - 2 x # )  x/2 (32) 

0~1-I=0 (33) 

From which it follows that 

P ( x )  = 0 (34) 

Let us now solve the equations of motion. From (25) we find 

e = a(x)ei(2x)'/2'+ b ( x ) e  -i(2x)'/=' (35) 

The two cases k > 0 and ~ < 0 must be treated separately. For ~ > 0 the 
condition that e be real requires a = b. Then requiring 3~' = 0 fixes a = b = 0 
so that classically only a collapsed space is possible. For ~ < 0 the situation 
is more interesting. In this case a need not equal b. In fact 3~' = 0 requires 
either a = 0 or b = 0. The two cases are related by time reversal and describe 
exponentially contracting or expanding universes. (Note that the relation 
between the sign of ~ and the behavior of the space-time geometry is 
opposite to the four-dimensional case.) 

If the spatial geometry is closed then x is a periodic variable with 
period 1. In this case the expanding geometry looks like Figure 3. 
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Fig. 3. An expanding constant curvature geometry. 

In the s gauge we find only one (2) solutions of the equations of motion 
for ~ > 0 (~ < 0). All other solutions are related to those by spatial 
reparametrization. This is in contrast to the apparently infinite number of 
solutions in the c gauge. This infinity is illusory because different solutions 
are related by general coordinate transformations. 

4. QUANTIZATION 

Consider the system defined by the Hamiltonian density 

elrI 2 
)~~ = ~ + ~fle (36) 
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and subsidiary conditions 

P(x) l tk  ) - 0  (37a) 

, , v ' (x )  I,k) -- 0 (37b) 

(We assume space is closed so that 0 ~< x < 1.) 
We shall construct a quantum system with Hamiltonian (36) that 

satisfies (37) on a suitable subspace. 
The variables e(x)  are the absolute values of ~,1/2 in the S gauge and 6xl 

thus range from 0 to oo. The variable g> = log e(x)  ranges from - oo to + oo 
and is an appropriate choice for a canonical variable. The canonical 
measure 

rld (x) (38) 
x 

is reparametrization invariant unlike H de(x). The Lagrangian in terms of q~ 
is 

so that 

II~0e- �9 I-l~o 
H = 2fl + flXe r (40) 

where II~ is the momentum conjugate to qn. This is the unique ordering 
which is both Hermitian and reparametrization invariant. 

The W - D  equation is 

1 Le_e,  fl3_. +fl~te~,)~(qj ) = 0  (41) 
2fl 8qn 3rp 

To solve this we change variables to e -- e ~ 

3e ~' = 2hf12~' 

We now impose (37) by requiring ~k to be a function of the spatial volume 

+(o)=+(fedx) (42) 
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We obtain 

whose solution is 

d2~k = 2~,f12~b (o)  (43) 
dv:~ 

~b ( v ) = aexp(2~fl2 )l/2o + bexp(2~fl2 )l/2o (44)  

In computing inner products between gauge-invariant states the mea- 
sure d@ is replaced by 

dv/v  (45) 

With this measure the wave function (44) is nonnormalizable for all a, b, h. 
For h > 0 and a = 0 the divergence in the norm of ~k is a mild logarithmic 
infinity coming from small volumes. Although no covariant physical regula- 
tion scheme has been formulated for quantum gravity we assume reasonable 
physics can be obtained by cutting off small v < e and looking for quantities 
which are insensitive to the cutoff. When ~ > 0 the overwhelming bulk of 
the probability distribution is concentrated in volumes of order e. There is 
no interesting long-distance physics. This is the quantum remnant of the 
classical collapse discussed in Section 1. 

For ~ < 0 general a, b give rise to wave functions with logarithmic 
divergences both in the uv and ir. The existence of two linearly independent 
solutions for ~k is related to the two classical motions (34). To see this we 
compute the expectation value of b / e  which is positive (negative) for 
expanding (contracting) geometries. Using 

- = - ~ I I  
e e 

and (44) we find 

= a ' a -  b*b 
a*a + b*b J2~.l / (46) 

Thus for b = 0 (a = 0) the geometry expands (contracts). 
We can also compute the dispersion in ~/e .  For the states with a or b 

vanishing we find 

(47) 
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The expansion rate operator whose properties we have just examined 
describes a geometrical property of the metric and as such is generally 
coordinate invariant. However, in gauges other than the synchronous gauge 
it is a nonlocal functional of the metric. We can also study the properties of 
quantized space-time in terms of more familiar gauge-invariant operators 
which are integrals of local functions of g. The simplest such operator is the 
space-time volume 

U=fd2x  
Its expectation value is 

~176 2 
TL --~-vI~Pl 

~dv 2 
fo TIr 

= T{ 0, h > 0 (48) 
oo, h~<0 

where T is the proper "lifetime" of the geometry. In evaluating (48) we have 
introduced an ultraviolet volume cutoff e. The zero value for (1 /T) ( f~)  with 
2~ > 0 is the limit of - 1 / ln  e, while the infinity for h < 0 is of infrared origin 
and persists even for finite e. 

Clearly only for h > 0 does it make sense to talk of long-distance, 
cutoff independent properties of space-time. 

More interesting than the volume are the curvature invariants: 

K.=fd2x R"=faxd. ( )"e (49) 

The equations of motions give 

x (50) 
e 2e 2 

so that 

Kl~fdxdTI~-~e 'b~e-n~ke] ~fd'r(-~-2~W ) (51) 
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and 

(K1) = - 2)~(f~) (52) 

which agrees with the "classical" statement that the average curvature of 
space time is - 2 k .  

For n >/2, K, suffers from ordering ambiguities. We resolve these by 
insisting that the classical statement that space-time has constant curvature 
- 2 k  remain true at least in the sense of expectation values. The invariant 
statement of this requirement is 

~K,,) = ( -27~)" (~)  (53) 

It may be achieved by the following ordering for Ks: 

_reI e _ l 
K: j ~ 2fl 2 ] 

and analogous ordering for the higher K,,. This choice of ordering is the 
only polynomical form for K, we have found which is Hermitian (with 
respect to the measure de/e), transforms as a density under spatial coordi- 
nate changes, and reproduces equation (53). 

The equation K l [ r  ) is satisfied identically by any state 
which obeys the Wheeler-DeWitt equation. Thus all fluctuations in the 
integrated curvature are induced by those in fL The average curvature 
~-~K 1 (note [KI~ ] = 0) behaves classically. 

Similarly since H(x)l~k ) = 0 = (1-[2/2flZ)(x)]~) = - ~kl~b ) we have 

Kz[+)-- 4hz~[+) (54) 

This pattern continues for all n. The general form for K. is 

n - 1  

K,, = ( - 2 h ) " f ~ +  Y'~ Ckgffl-I 2k (55) 
K = 0  

so that 

K,I~p) = ( - 2 h ) " ~  1r (56) 

and all average curvature invariants are classical. 
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Operators like the K, ,  which are time-reversal invariant, take on the 
same value for both the expanding (b = 0) and contracting (a = 0) states 
since these transform into each other under time reversal, 

Operators (like the expansion rate) which are not T invariant are only 
sharp if we choose a or b = 0. 

Based on the computations we have done we believe that if such a 
choice is made all local properties of space-time are classical. All quantum 
fluctuations are driven by those in the space-time volume. 

The wave functions with a or b = 0 seem to be the only physically 
reasonable solutions of the W - D  equation, One cannot imagine preparing a 
state which is a superposition of an expanding and contracting universe. But 
we are here treading on dangerous ground-- the  whole question of the 
meaning of the quantum mechanical measurement theory when applied to 
the whole universe is a murky area into which we would rather not venture 
at present. 

To summarize, we have formulated pure (1 + 1)-dimensional quantized 
gravity as a system with one degree of freedom. The quantum mechanics has 
an ultraviolet divergence problem at small values of the spatial volume o. 
For positive cosmological constant the whole wave function is concentrated 
around v = 0 and there is no interesting dynamics when the ultraviolet 
regulator is removed. This reflects the behavior of the classical Lagrangian 
?'x/g- which predicts a singular collapsed geometry. 

For ~ < 0 the expectation values of the spatial and space-time volumes 
are infinite even when the ultraviolet regulator is removed. The system has 
two states corresponding to an expanding and collapsing universe. Local 
geometrical quantities have no quantum fluctuations. 

5. COUPLING TO M A I T E R  

To study the coupling of the gravitational field to matter, it is conveni- 
ent to rewrite the Lagrangian (28) in the axial gauge. The two gauges are 
related by a time-dependent reparameterization of space which is generally 
complicated and nonlocal. However, at any fixed time we can set 0xe = 0 
within the synchronous gauge, so that the two gauges coincide at that 
instant. Since the Lagrangian describes changes in the system over infinitesi- 
mal time intervals we need only find the relation between the gauges for 
configurations which are close to 

0) 
e~ = V(~-) 
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Thus we write 

e(x ,  ~'o) = V(zo) 

e ( x , % + A r ) = V ( % ) + A ~ I " ( r o ) + A r O x ( V ( z o ) f ( X , r  ) (58) 

That is we interpret the change in e in the synchronous gauge as the change 
in e~ ( --- V) in axial gauge plus the transformation between gauges. Under 
the gauge transformation by ATf(x,  %) the other components of e~ trans- 
form as 

We conclude that 

8 e ~  ~ 

8elo = - V(r  to) - y ( x ,  9"0) 

b(x,  "to) = ( P ' -  OxY) 

So the Lagrangian density is 

,e' = ( v -  oy)2  Bxv 

We now add the coupling to a gauge field 

1 
~ a u g e  = -- -4r 

(59) 

(60) 

(61) 

A 1 =- A ( t )  ( 6 3 )  

The total Lagrange density is then 

(64) 

OxA t = 0 

In the axial gauge ~ = v. 
In 1 + 1 dimensions a gauge field on a closed ring has a single degree of 

freedom, the Wilson loop around the ring. This degree of freedom is 
exposed in the Coulomb gauge 

_ 1 ( A t _  0xAo)2 (62) 
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and the Hamiltonian density 

/3 2 = + e R ) + B a / 3  

=[POxY+EOxAo]-l[(axY)2+(OxAo) 2] (65) 

where p and E are the canonical conjugates to V and A, respectively. 
The constraint equations for y and A 0, combined with periodicity in x, 

imply that 

y = A o = 0 (66) 

so that 

/3 2 9~'(x) = ~-~(P + E2)+~/3 (67) 

The electric field E clearly commutes with H(x) so we can find solutions of 
the Wheeler-DeWitt equation 

~'~(x) Iq,) = 0  (68) 

by first diagonalizing E and then finding solutions of 

o 2 

Clearly the presence of a nonzero field E shifts the cosmological 
constant just as a 0 parameter does in four dimensions. The coupled system 
has an infinite number of states. If the original cosmological constant is 
negative some of these states witll represent expanding finite worlds but 
there is a critical value of E above which (~)  = 0. 

The introduction of scalar or spinor fields is more complicated and we 
have not yet found a consistent quantum mechanical description of these 
systems. We will therefore treat these fields classically. However, there is 
one quantum mechanical effect of scalars which can (and for consistency 
should) be included in our semiclassical treatment. Polyakov (1981) has 
shown that the short-distance quantum fluctuations of scalar fields produce 
a renormalization of the effective gravitational action. The cosmological 
constant is infinitely renormalized and fl--,fl- n/24~r, where n is the 
number of scalar fields. 
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We will assume that it is meaningful to separate these short distance 
effects from the rest of the dynamics of the field, which we will treat 
classically. 

It is relatively easy to extend our semiclassical considerations to include 
scalar fields. We will restrict our attention to "minimal" couplings, for 
which derivatives of g~,~ do not appear in the matter Lagrangian. The 
semiclassical prescription is then to solve the Euler-Lagrange equations of 

/3 ~ e  - )re + '~matter - -  ' ~  (70)  

Together with the constraints (~re = ~ / e  because of minimal coupling) 

erI  
2fl + hBe + Jt".,(x) = 0 = 9i f(x)  (71) 

P = eOxIIe +Pm = 0 (72) 

Jr~ and P., are the energy and momentum densities of the matter fields. 
We must make sure that the constraint (71) propagates [(72) generates a 

symmetry of.LPand is certainly conserved.] This entails 

~ ( y )  = f d x  { .~ ' (x ) ,  .g'~ )pB = 0 (73) 

f = 0  (74) 

In (74) we have used the minimality constraint. 
The classical matter energy densities satisfy the Dirac Schwinger, PB 

algebra so (74) can be rewritten 

O=Ox[e2@x)P,, ,(x) (75) 

which, in view of (72) is equivalent to 

At any instant of time we can choose a parametrization for which 0xe = 0. 
(76) then implies 

O2IIe = 0 (77) 
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whose only periodic solution is H e = const. Since El e transforms like a 
scalar under reparametrizations IIe = const even if 0xe 4: 0. Thus H e is 
constant in x for all times and if we choose 0xe = 0 initially the geometry 
will remain homogeneous. Thus it is apparently impossible to produce 
spatially varying geometries in 1 + 1 dimensions, even in the presence of 
matter. 

Returning to equation (72) we find a constraint on the matter fields 

Pm(X)=O (78) 

for a single massless scalar field (78) can be satisfied if only the zero 
momentum mode of the field is excited. For several fields there are many 
solutions of the field equations satisfying (78). 

We are not satisfied with our understanding of the quantum mechani- 
cal implementation of all these constraints. One possible procedure is to 
solve the constraints classically and then quantize the remaining modes. For 
a single scalar field this means that we quantize only the zero momentum 
mode. 

The coupling to matter is particularly simple when the trace of the 
stress energy tensor vanishes, as it does for a free massless field: 

I t  (79) 

The Hamiltonian density is then 

(80) 

and the equations of motion are 

. . . . .  e e e h e + e T +  

= - -  +) ,e  + e-~- + - -  = 0  o~' (x)  2 e 

(81) 

(82) 

Equations (81) and (82) can be rewritten 

~ / e  = - 2h 

0 2 / e + h e + ~ e  = 0  

(83) 

(84) 
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where P is the canonical conjugate to ~ and we have used homogeneity to 
set XT~ -- 0. The equations of motion for ~ imply that P is const. 

From (83) and (84) we find 

e = A cosh(2l?q)l/2t 
p2 

A 2 _ - _ _ _  
27~ 

This describes a universe which undergoes a cosmological bounce. It starts 
at infinite volume, contracts to circumference A at t = 0, and reexpands. 

6. CONCLUSIONS 

We believe we have presented a consistent quantization of (I +1)- 
dimensional gravity in the synchronous gauge. In many respects this gauge 
is similar to the temporal (A 0 -  0) gauge in ( l+l) -dimensional  gauge 
theories. The value of such a quantization is that it exposes most clearly the 
physical degrees of freedom. Gauge fields may also be included. Their 
physical effect is to introduce a "background" electric field which shifts the 
cosmological constant. Scalar and spinor fields are more difficult and we do 
not entirely understand how to satisfy the various constraints involved. 

One peculiar feature of the ( l+l) -dimensional  theory is that the 
geometry is completely homogeneous with respect to spatial translations, 
even in the presence of matter fields. This is not a statement about 
expectation values, but rather an exact feature of the quantum wave 
function. For example, the space derivatives of the space-time curvature and 
the expansion rate ~ / e  annihilate the physical states. 

The Wheeler-Dewitt equation , , ~ ( x ) = 0  plays a dual role in our 
formalism. First of all it is the condition for invariance under local time 
translations. It also seems to play a gauge fixing role, at least classically, 
which picks out a particular family of s gauges. In fact )~'(x) = 0 fixes the 
gauge freedom associated with local time translations of the initial spacelike 
surface F. One may then wonder whether the theory is invariant under these 
transformations. Let us consider such a coordinate transformation 

8x=f'(x,~') 

=f~ (85) 
with 

fx = - e-~ O,f ~ (86) 
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The change in the action may readily be computed. 

x e ) Oxf (87) 

= f ~P(x)Oxf ~ (88) 

The important thing about (88) is that it is proportional to P(x) which 
annihilates all physical states. Therefore, in the physical subspace the theory 
is invariant under the entire residual gauge group which preserves the form 
of the s gauge. 

On the basis of dimensional considerations, quantum gravity in 1 + 1 
dimensions should be renormalizable but not necessarily finite. Indeed we 
find the wave function q,(v) is not quite normalizable. Its norm is logarith- 
mically ultraviolet divergent. However, many quantities have finite limits as 
the cutoff length tends to zero. In particular the space-time curvature and 
local expansion rate are finite. 

The behavior of the solution is quite different for X > 0 and X ~< 0. For 
X > 0 the geometry collapses. For X ~ 0, however, the wave functions 
describe exponentially expanding or contracting universes. When matter 
fields are included it seems likely that the expanding or contracting solu- 
tions are replaced by a single "bounce" in which an initially contracting 
universe reaches some minimal size and then expands. 
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